
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on 76004.3437@compuserve.com

or write/fax us at The Delphi Magazine

Changing The Defaults

QHow do I change the default
size of the Object Inspector

and Edit Window, set a new default
form font and change the default
project directory?

AThe default form font and de-
fault editor size can be speci-

fied in the DELPHI.INI file in the
Windows directory as specified in
\DELPHI\DOC\INIFILE.TXT. To set
the default font to the Windows 3.1
dialog default, ensure the following
entry occurs in the FormDesign
section:

[FormDesign]
DefaultFont=MS Sans Serif, 8, bold

To set the editor to a new size, add
this entry to the Editor section:

[Editor]
DefaultWidth=500
DefaultHeight=400

To set accurate values, you can use
WinSight (from the Delphi Program
Manager group). Manually set the
editor to your desired size, then
choose WinSight’s Spy | Find Win-
dow and click on the caption bar of
the Delphi editor. This will cause
WinSight to highlight the editor
details, including its co-ordinates,
from which you can calculate the
width and height.

To set a new default size and
position for the Object Inspector,
you need to make Delphi generate
a default desktop file (\DELPHI\
BIN\DELPHI.DSK) with appropri-
ate sizing information in it. Follow
these instructions.

1. Choose File | Close Project
(if you have a project open).

2. Choose Options | Environment
and look on the Preferences tab.

3. If Autosave options: Desktop is
not checked then check it. Also en-
sure the Desktop contents: Desktop
only radio button is selected.

4. Set your desired Object
Inspector size and choose File |
Exit.

5. Restart Delphi. If you checked
Autosave options: Desktop in step
3, uncheck it again.

To change the default directory
that Delphi offers to save projects
in, you must change its idea of its
own current directory. This can be
achieved by changing the Windows
3.1 Program Manager properties
for the Delphi icon, or the Windows
95 shortcut properties. This is not
an ideal solution, since during one
session Delphi can have its current
directory changed, but it’s the best
I can come up with at this time.

TDBLookupList &
TDBLookupCombo Exceptions

QThe TDBLookupList and
TDBLookupCombo components’

LookupSource data source property
must be connected to a TTable
component. Why is this?

AThe lookup components use
the table’s SetKey and

GotoKey methods to look up the
LookupField value. A query does
not have these methods. Avoiding
the problem requires using a third-
party component that does its
lookups in some other way. [Take
a look at Steve Troxell’s ‘Surviving
Client/Server’ column from Issue 5
for some hints. Editor]

Comment On Issue 6 Article

QI understood that writing low
level things like system inter-

rupt handlers as you demon-
strated in Issue 6 (Callbacks In

Windows And The BDE: Part 3)
required rather more than just
writing code. Don’t you have to set
up segment attributes?

AThat’s right – the article
omitted these details (oops).

Any code that may get called from
an interrupt handler needs to be
present in memory when it is
needed. SysUtils itself ensures that
it is in memory by using the follow-
ing compiler directive to set up the
segment attributes:

{$C MOVEABLE PRELOAD PERMANENT}

This directive should really also be
present in my INTRUPTU.PAS and
INTRUPU2.PAS source files, as
some of their code may be called
from the SysUtils interrupt han-
dler. In truth there is still more that
can be done to make things safer.
Windows resources also have
attributes to dictate whether they
remain available in memory, or get
brought in as required. Forms are
stored as resources, and the form
in INTRUPU2.DFM is used from the
interrupt handler. If you have
Resource Workshop, you can load
the DFM file up, select TACTIONFORM
and Resource | Memory options...,
and uncheck Load on call and
Discardable.

Making Field Objects
Without The Fields Editor

QWe wish to standardise
access to our tables for all

our programmers. This means we
will create a TCustomerTable compo-
nent (with default TableName and
DatabaseName properties, etc),
which will be used in preference to
the standard TTable component. Is
it possible to programmatically
create field objects in this new

March 1996 The Delphi Magazine 55

component’s constructor which
will be available to the program-
mer at design time through the
Object Inspector? These field ob-
jects would be just like those made
by the Fields Editor, but without
having to explicitly use it. If this is
the case, can we also manufacture
calculated fields in this way?

ATo do this will simply
require a scan through the

source code of the Fields Editor to
see what it does. The Fields Editor
(internally known as the Dataset
Designer) is in the DELPHI\LIB
directory in DSDESIGN.DFM and
DSDESIGN.DCU and... oh dear – no
source code! This means we’ll have
to work it out for ourselves...

When the Fields Editor is used, it
is something external to the
TDataset derivative it is working on
(I’ll just refer to TTables for the pur-
poses of this discussion). It manu-
factures a new object which gets
stored in the form file, but is then
connected to the appropriate
table. Once it has done this, the
new field object is around forever,
or until it or the table is deleted.
Each time the form is opened at
design or run time, the field object
will be brought back to life. If we
make a field object from inside a
new table object we need to be
careful to match this operation. It
needs to be created only when the
component is dropped onto the
form, but not when a form is being
opened at design or run time.

In principle, all we need to do to
get the field object in the Object
Inspector is create it, specifying it
is owned by the form (not the
table), and set its properties,
including its name (we’ll stick with
the Fields Editor convention of the
table component name concate-
nated with the field name). Setting
the properties is the tricky part: we
need to make sure that Size,
FieldName, DataType and of course
the class type are all correct before
finishing, otherwise the field object
will not be accepted, and the table
component will fail to construct.
We could decide to force the
component writer to hardcode all
these properties, but this is unnec-
essary. We should be able to glean

the information from the table
itself – remember that a table com-
ponent has a FieldByName method
which returns a field object when
given a field name (providing the
table is open, we’ll open it if it isn’t).

This is fine if we just want one
field object. Listing 1 shows a com-
ponent (TABLE.PAS) which repre-
sents a customer table and makes
a field object for the Company field.

However, for more than one field
the plan falls down. You may know
that when using the Fields Editor,
once you add even one field object,
the table view is restricted to just
that one field. FieldByName will fail
for any other fields and so we won’t
have access to the properties we
want to set up. To remedy this the
second version of the component,
TABLE2.PAS in Listing 2, uses an-
other TTable, set up to point at the
same table, to access the normal
run-time field objects. This is done
in MakeFields, which takes an array
of field names as a parameter.

As for calculated fields, we need
to supply more information: the
field name, data type and size (or
zero if it is not relevant). We still
need to ensure that an object of an
appropriate type is constructed
(TStringField, TBooleanField etc)
but this time we cannot rely on
existing run-time objects to copy.
Instead, I have used a TFieldDef ob-
ject in the MakeCalculatedField
method, which does it all for me.

The last issue is the calculation
of the calculated fields. The object
sets up its own OnCalcFields han-
dler, called OldOnCalcFields, which
calculates the value of the Taxable
field (these calculated values show
up at design time if the table’s
Active property is True). It could
have been just one line, but there
is something else to consider. The
new table component will still have
OnCalcFields showing on the
Object Inspector’s Events page. If a
user double-clicks on this (or
presses Ctrl-Enter) a replacement

unit Table;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, DB, DBTables;
type
 TNewTable = class(TTable)
 public
 constructor Create(AOwner: TComponent); override;
 end;
procedure Register;

implementation

constructor TNewTable.Create(AOwner: TComponent);
var
 Field, OldField: TField;
 SaveActive: Boolean;
begin
 inherited Create(AOwner);
 DatabaseName := ’DBDEMOS’;
 TableName := ’CUSTOMER’;
 { Only make objects when asked by user not when
 reading in from form stream }
 if not (csLoading in AOwner.ComponentState) then begin
 SaveActive := Active;
 Active := True;
 { Specify target field here }
 OldField := FieldByName(’Company’);
 Field := TFieldClass(OldField.ClassType).Create(Owner);
 Field.FieldName := OldField.FieldName;
 Field.Name := Name + Field.FieldName;
 Field.Size := OldField.Size;
 if not SaveActive then
 Active := False;
 Field.DataSet := Self;
 end;
end;

procedure Register;
begin
 RegisterComponents(’Samples’, [TNewTable]);
end;
end.

➤ Listing 1

56 The Delphi Magazine Issue 7

unit Table2;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, DB, DBTables;
type
 TCalcFieldsEvent =
 procedure (DataSet: TDataSet; var DoDefault: Boolean)
 of object;
 TNewTable2 = class(TTable)
 private
 FOnCalcFields: TCalcFieldsEvent;
 procedure OldOnCalcFields(DataSet: TDataSet);
 public
 constructor Create(AOwner: TComponent); override;
 procedure MakeFields(const FieldNames: array of String);
 procedure MakeCalculatedField(const FieldName: String;
 DataType: TFieldType; Size: Word);
 published
 property OnCalcFields: TCalcFieldsEvent
 read FOnCalcFields write FOnCalcFields;
 end;
procedure Register;
implementation
constructor TNewTable2.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 DatabaseName := ’DBDEMOS’;
 TableName := ’CUSTOMER’;
 MakeFields([’Company’, ’CustNo’, ’TaxRate’]);
 MakeCalculatedField(’Taxable’, ftBoolean, 0);
 inherited OnCalcFields := OldOnCalcFields;
end;
procedure TNewTable2.MakeFields(
 const FieldNames: array of String);
var
 CopyTable: TTable;
 Field, CopyField: TField;
 Loop: Byte;
begin
 { Only make objects when asked by user
 not when reading in from form stream }
 if not (csLoading in Owner.ComponentState) then begin
 { Make normal table object (it will have all fields
 available. If we were to rely on this table, after the
 first field object is added, we wouldn’t see any other
 fields) }
 CopyTable := TTable.Create(nil);
 try
 { Set up copy table properties and open it }
 CopyTable.DatabaseName := DatabaseName;
 CopyTable.TableName := TableName;
 CopyTable.Open;
 { Loop for each new field object }
 for Loop := Low(FieldNames) to High(FieldNames) do
 begin
 { Find the normal run-time field }
 CopyField := CopyTable.FieldByName(FieldNames[Loop]);
 { Construct a new object of the appropriate class
 type. This is the thing which will end up in the
 Object Inspector }

 Field :=
 TFieldClass(CopyField.ClassType).Create(Owner);
 { Tie it to a field }
 Field.FieldName := FieldNames[Loop];
 { Give the object a name }
 Field.Name := Name + FieldNames[Loop];
 { Set the size up correctly }
 Field.Size := CopyField.Size;
 { Insert the field in this table }
 Field.DataSet := Self;
 end;
 finally
 CopyTable.Free; { Finished with the copy table now }
 end;
 end;
end;
procedure TNewTable2.MakeCalculatedField(const FieldName:
 String; DataType: TFieldType; Size: Word);
var
 Field: TField;
begin
 { Only make objects when asked by user
 not when reading in from form stream }
 if not (csLoading in Owner.ComponentState) then
 { Use a field definition object to save code }
 with TFieldDef.Create(nil, FieldName, DataType,
 Size, False, 0) do
 try
 { Make appropriate field object }
 Field := CreateField(Owner);
 Field.Calculated := True;
 { Sort its name out, so it will appear
 in the Object Inspector }
 Field.Name := Name;
 { Insert it into the table’s field list }
 Field.DataSet := Self;
 finally
 Free;
 end;
end;
procedure TNewTable2.OldOnCalcFields(DataSet: TDataSet);
var
 DoDefault: Boolean;
begin
 DoDefault := True;
 if Assigned(FOnCalcFields) then
 FOnCalcFields(DataSet, DoDefault);
 if DoDefault then begin
 { Calculated field calculation needs to be placed here }
 FieldByName(’Taxable’).AsBoolean :=
 FieldByName(’TaxRate’).AsFloat > 0;
 end;
end;
procedure Register;
begin
 RegisterComponents(’Samples’, [TNewTable2]);
end;
end.

➤ Listing 2

handler will be made, losing the
ready-made calculations. This may
or may not be desirable so I have
allowed for either.

The object adds a replacement
OnCalcFields event property,
which has one additional parame-
ter: DoDefault. If a user makes a new
OnCalcFields handler, the value of
DoDefault (which defaults to True,
but can be changed in the handler)
dictates whether the original
calculations will take place or not.
An example project showing the
second component in action is
provided as TBLTEST.DPR. At de-
sign time the calculated field is
given values, at run-time DoDefault
is set to False and so no values are
given.

Delphi Hasn’t Got The Power

QIf Delphi is such an advanced
language, why is it such a

pain to raise a number to a power?
In Visual Basic we can say Z = X^Y
but the best we can do in Delphi is

Z := Exp(Ln(X) * Y);

ARather than enter into a
battle of which language is

the more capable, I’ll simply say
that Delphi 2.0 remedies this, but
for 16-bit development here is a
more complete implementation of
a power function. Unlike the short
expression above, this caters for
powers of zero and negative num-
bers. Listing 3 is the routine (note
the use of the often overlooked
functions Frac and Odd) taken from

the POWERU unit on the disk,
which is used by a project called
POWTEST.DPR. The project has
two edit boxes for entering the
number and the power to raise it
to, and also a label to display the
result. The power is calculated by
tabbing from one edit box to
another (using their OnExit event
handlers) or by pressing the Enter
key after typing in a new number
(OnKeyPress event handlers).

One or two things in the listing
are worth mentioning here before
leaving the subject. If a non-integral
power is requested of a negative
number, this is detected and an
error is signalled by way of an
exception being raised manually.
This is done rather than perform
the mathematical operation which
would yield the problem for a good
reason. DLLs written in Delphi

March 1996 The Delphi Magazine 57

have a responsibility to trap any
software exceptions that may hap-
pen (an important and understated
point), to prevent them being left
with the EXE (which may not have
been written in Delphi). If this func-
tion were to be called in a DLL it
would therefore be desirable to
trap the exception and deal with it.
However, the DLL would not get a
chance. Math errors and other
hardware exceptions such as GPFs
are picked up directly by the EXE
which, if it is written in Delphi, will
then turn the problem into a Delphi
software exception. To allow the
DLL a look-in, the code generates
the software exception directly,
which can be trapped, thereby
avoiding the issue.

The two edit controls share an
OnExit event handler called
CalculatePower, which calls the
Power function with the values
gleaned from the edit controls.
They also share an OnKeyPress
handler which detects the Enter
key, and calls the CalculatePower
handler.

Windows File Errors

QWhen I try and open a file
that is already opened in

another program, Windows puts
up a system modal error telling me
it is already in use and asks me if I
wish to cancel the operation or try
again. If I cancel, I then get a normal
Delphi I/O File Access Denied
exception. Is there a way to prevent
this Windows error box?

AThere are at least two ways
of stopping the problem; the

first is to modify the FileMode
variable before calling Reset or
Rewrite (see my File Handling
article in this issue for more details
on these symbols):

FileMode := fmOpenReadWrite +
 fmShareDenyNone;

The other approach is to explicitly
tell Windows not to show its error
box using the SetErrorMode API, as
shown in Listing 4. Using file
sharing symbols tends to be the
preferred way.

function Power(Number, Exponent: Extended): Extended;
const
 SInvalidOp = 65428; { from SysUtils.Inc }
begin
 if Number > 0 then
 { +ve number, any power: x^y = exp(ln(x)*y) }
 Result := Exp(Ln(Number) * Exponent)
 else if Exponent = 0 then
 { Any number to power zero: x^0 = 1 }
 Result := 1
 else
 { -ve number, any power - only valid for whole powers}
 if (Frac(Exponent) = 0) and (Exponent <= MaxInt) then begin
 Result := Exp(Ln(-Number) * Exponent);
 { If the power is odd, result is -ve }
 if Odd(Trunc(Exponent)) then Result := Result * -1;
 end else
 { Fractional power of negative number not allowed so give exception }
 raise EInvalidOp.CreateRes(SInvalidOp);
end;

➤ Listing 3

var OldMode: Word;
...
OldMode := SetErrorMode(sem_FailCriticalErrors + sem_NoOpenFileErrorBox);
AssignFile(F, c:\delphi\readme.txt);
try
 Reset(F);
except
 on EInOutError do
 {Handle problem};
end;
SetErrorMode(OldMode);

➤ Listing 4

Toggling Shift Key States

QI read your Typecasting
Explained: Part 2 article in

the November issue which, among
other things, showed one way to
access the BIOS Data Area in
conventional memory. I tried to
use an approach like this to toggle
the state of Caps Lock and Num Lock,
as I can successfully do under DOS,
but to no avail.

AYou can forget about talking
to the BIOS Data Area for this

chore: you need to use Windows
APIs. Windows maintains an array
of bytes representing the state of
all the keys on the keyboard (in-
dexed by their virtual key codes).
For the Caps Lock, Num Lock and
Scroll Lock keys, the low bit is im-
portant since it acts as a toggle.
Switch the bit to the other setting
and the state of the that key
changes. In other words, to change
the state, you flip the bit (which
can be done with an xor operation).
A project called TOGGLE.DPR is
included on the disk showing the
old approach and also the correct

approach. Here is the code which
toggles the Caps Lock key state:

var Keyboard: TKeyboardState;
procedure TForm1.CapsLockClick(
 Sender: TObject);
begin
 GetKeyboardState(Keyboard);
 Keyboard[vk_Capital] :=
 Keyboard[vk_Capital] xor 1;
 SetKeyboardState(Keyboard);
end;

58 The Delphi Magazine Issue 7

	Changing The Defaults
	TDBLookupList & TDBLookupCombo Exceptions
	Comment On Issue 6 Article
	Making Field Objects Without The Fields Editor
	Delphi Hasn't Got The Power
	Windows File Errors
	Toggling Shift Key Starters

